Multi-atlas segmentation with augmented features for cardiac MR images

نویسندگان

  • Wenjia Bai
  • Wenzhe Shi
  • Christian Ledig
  • Daniel Rueckert
چکیده

Multi-atlas segmentation infers the target image segmentation by combining prior anatomical knowledge encoded in multiple atlases. It has been quite successfully applied to medical image segmentation in the recent years, resulting in highly accurate and robust segmentation for many anatomical structures. However, to guide the label fusion process, most existing multi-atlas segmentation methods only utilise the intensity information within a small patch during the label fusion process and may neglect other useful information such as gradient and contextual information (the appearance of surrounding regions). This paper proposes to combine the intensity, gradient and contextual information into an augmented feature vector and incorporate it into multi-atlas segmentation. Also, it explores the alternative to the K nearest neighbour (KNN) classifier in performing multi-atlas label fusion, by using the support vector machine (SVM) for label fusion instead. Experimental results on a short-axis cardiac MR data set of 83 subjects have demonstrated that the accuracy of multi-atlas segmentation can be significantly improved by using the augmented feature vector. The mean Dice metric of the proposed segmentation framework is 0.81 for the left ventricular myocardium on this data set, compared to 0.79 given by the conventional multi-atlas patch-based segmentation (Coupé et al., 2011; Rousseau et al., 2011). A major contribution of this paper is that it demonstrates that the performance of non-local patch-based segmentation can be improved by using augmented features.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

An Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network

Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...

متن کامل

Neural Multi-Atlas Label Fusion: Application to Cardiac MR Images

Multi-atlas segmentation approach is one of the most widely-used image segmentation techniques in biomedical applications. There are two major challenges in this category of methods, i.e., atlas selection and label fusion. In this paper, we propose a novel multi-atlas segmentation method that formulates multi-atlas segmentation in a deep learning framework for better solving these challenges. T...

متن کامل

Deep Fusion Net for Multi-atlas Segmentation: Application to Cardiac MR Images

Atlas selection and label fusion are two major challenges in multi-atlas segmentation. In this paper, we propose a novel deep fusion net for better solving these challenges. Deep fusion net is a deep architecture by concatenating a feature extraction subnet and a non-local patchbased label fusion (NL-PLF) subnet in a single network. This network is trained end-to-end for automatically learning ...

متن کامل

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image analysis

دوره 19 1  شماره 

صفحات  -

تاریخ انتشار 2015